

NOW...Scientific Evidence on Effects of Smoking!

Hey kids... don't smoke

R. A. Fisher on smoking and lung cancer (in 1957)

... the B.B.C. gave me the opportunity of putting forward examples of the two classes of alternative theories which **any statistical association**, **observed without the predictions of a definite experiment**, allows--namely, (1) that the supposed effect **is really the cause**, or in this case that incipient cancer, or a pre-cancerous condition with chronic inflammation, is a factor in inducing the smoking of cigarettes, or (2) that cigarette smoking and lung cancer, though not mutually causative, are **both influenced by a common cause**, in this case the individual genotype

Graphical notation for causality

Variables: vertices (or nodes)

• • •

Relationships: directed edges (arrows)

Shaded node / dashed edges: unobserved variable

Fisher: correlation is not causation

He did not use graphical notation like this

But the graphs can be very useful

Explaining an observed correlation

We find a statistically significant correlation between X and Y

What does it mean?

- 1. False positive (spurious correlation)
- 2. X causes Y
- 3. Y causes X
- 4. Both have common cause U [possibly unobserved]

Statistically indistinguishable cases (without "experimental" data)

Importantly different consequences!

A simple mathematical model of causality

Think about interventions that change some target variable ${\cal T}$

- Forget about the arrows pointing into T (intervention makes them irrelevant)
- Change T, e.g. setting it to some arbitrary new value T=t
- This change propagates along directed paths out of T to all descendant variables of T in the graph, causing their values to change

All of these changes could be deterministic, but most likely in our usage they are probabilistic

Exercise: in each of these cases, if we intervene on X which other variable(s) are changed as a result?

Y

9/19

Computing counterfactuals

X

If we know/estimate *functions* represented by edges, we can simulate/compute the consequences of an intervention

Causal inference: much more difficult

Predictive machine learning is about

 $p_{Y|X}(y|x)$

and regression--conditional expectation, conditional quantile, etc. If we passively observe some value of x, what would we observe about y?

Causal inference is about (various notations)

$$p(y| ext{do}[X=x]), \quad ext{i.e.} \quad p(y|X\leftarrow x)$$

i.e. what happens to \boldsymbol{Y} when we actually intervene on \boldsymbol{X}

If we actively change x, what would we observe about y?

Experiments

Actually do interventions while collecting data

Observational studies

Try to infer causal relationships without interventions, by using dark arts more/specialized assumptions/methods that require careful interpretation

Scientific progress: be wrong in more interesting/specific ways

Potential outcomes: another causal framework

Relative strengths/weaknesses compared to DAGs

- Narrow focus: goal is to estimate one edge in a graph
- Difficult to express more complex relationships

This is not a course on causal inference

Covering a few basics for interesting connections to ML!

So when is ML (and e.g. regression) useful for causal inference?

Idea: adjusting for confounders

Confounders: other variables that obscure the (causal) relationship from X to Y, e.g.

- *Y*: health outcome
- *X*: treatment dose
- *Z*: disease severity

Without considering Z, it might seem like larger doses of X correlate with worse health outcomes

Solution: add more variables to the model

Make model complex enough to capture important factors

Similarly, might need to model *non-linear causal relationships*

Strategy: two staged regression

Two-stage least squares (2SLS)

Suppose we want to learn the causal relationship of D on Y, but

 $Y = D heta + Xeta + arepsilon_Y$ $D = Xlpha + arepsilon_D$

In words: X is confounding the relationship

- First stage: regress out X
- Second stage: using residuals from first stage,

regress $Y - X \hat{eta}$ on $D - X \hat{lpha}$

15 / 19

Powerful, intuitive idea Orthogonal projection We'll come back to this

(Think about fitting the relationships using ML instead of regression)

Propensity

General theme: applying ML strengths to causality

Special case: if the "treatment" (causal) variable is categorical

Many causal methods for this case involve predicting the treatment itself

i.e. prediction with categorical outcome, **classification**

We'll also come back to this (propensity methods) after covering classification

Summary: a key ingredient in many causal inference methods involves classification, can leverage ML tools

Guiding ideas / warnings

• More complex models (ML) do not guarantee better causal inference

Might even make things worse (just like with prediction)

• Models with better predictions may be worse for causal inference

Even if prediction accuracy is measured on test data!

• Inference = causal inference...?

Or, at least, causal interpretations can be special case of tradeoff between prediction and inference/interpretation

Causal inference

An exciting interdisciplinary field

Practically important, connections to ML

"Data scientists have hitherto only predicted the world in various ways; the point is to change it" -Joshua Loftus

Mixtape... remix? 🤔

19 / 19