
Machine learning
Optimization

Joshua Loftus

RecollectionsRecollections
Since the beginning of the term we've seenSince the beginning of the term we've seen

Fitting different kinds of modelsFitting different kinds of models

Least squares (global/linear and local/flexible)Least squares (global/linear and local/flexible)
Newton-Raphson for logistic regression / GLM / MLENewton-Raphson for logistic regression / GLM / MLE
Defining SVMs via optimization problemsDefining SVMs via optimization problems

Making models more complexMaking models more complex

Adding variablesAdding variables
More flexible functionsMore flexible functions

This lecture: This lecture: optimizationoptimization as a unifying framework for ML as a unifying framework for ML

2 / 292 / 29

ML tasks as optimization problems
For a given loss function and probability model

, we want to minimize the risk

Sampling assumption: we have an i.i.d. sample from

Then we focus on empirical risk minimization (ERM)

We also choose a function class (or parameter set), i.e. type of
, determining the domain of the optimization

L(x, y, g)
(X, Y) ∼ P

minimize R(g) = EP [L(X, Y , g)]

P

minimize
n

∑
i=1

L(xi, yi, g)
1

n

g

3 / 29

Example: GLMs

Probability model: the family of the GLM (e.g. binomial)
Empirical loss function: negative log-likelihood (MLE)
Function class: set of (parametric) functions of the form

for some -dimensional vector of parameters, fixed link
function

Make it more complex:

Add more predictors (new ones, or non-linear
transformations, interactions, etc)
Localize it: for some flexible, non-linear (e.g. loess)

fβ(x) = g−1(xT β)

(p + 1)
g

h

f(x) = g−1(h(x))

4 / 29

Parametric vs "non"-parametric

For GLM, Newton-Raphson gives us , i.e.

For loess, we choose (or use the default) span and then do
local logistic regression to get

(using a multi-dimensional analogue of loess if necessary)

In both cases, we have computed the empirical risk minimizer
 over some function class

Key optimization choice: which function class?

Multivariate linear case: which predictors to include?
loess case: what span value?

β̂ f̂

f̂

f̂

5 / 29

Example: SVM

Probability model: ...
Empirical loss function: hinge loss, means positive part

Next slide: ISLR Figure 9.2 plot of

Function class: linear classifiers

Make it more complex

Add more predictors
Reduce constraint-violation budget (non-sep. case)
Make it flexibly non-linear (future lecture)

[]+

n

∑
i=1

[1 − yi(xT
i β − β0)]+

1

n

L(yiŷ i) = [1 − yiŷ i]+

f(x) = sign(xT β + β0)

6 / 29

Example: SVM

7 / 29

Comparison: logistic vs SVM

Similar classification performance possible with both
Compare "apples to apples," e.g. both non-linear

Logistic advantage: inference
SVM advantage: computation

Key optimization choice: which function class?

Multivariate linear case
Which predictors to include?
What constraint budget value?

Non-linear case: choosing the analogue of the span value

8 / 29

ML design choices

Pattern repeats as we introduce more ML methods (kernel
methods, tree-based methods, neural networks, etc)

Loss function (RSS, MLE, hinge, etc)

Class of regression/classification functions (linear,
parametric non-linear, some specific kind of non-
parametric non-linear like loess, etc)

Algorithm for fitting an optimal function within that class
(choosing which predictors to include, estimating
coefficients, choosing span or SVM constraint budget, etc)

Statistics ...often forgotten in ML! Key assumptions: i.i.d. data
sampled from desired probability distribution (bias -
"dataset/distribution shift")

9 / 29

Optimization strategiesOptimization strategies

Choosing predictor variablesChoosing predictor variables

10 / 2910 / 29

Best subset selection

Try all subsets of predictor variables

Keep the best one (based on RSS or deviance or something)

Problem: complexity exponential in , over models if

2p

p 109

p = 30

11 / 29

Forward stepwise/stagewise selection

"Greedy" approximation to best subset

1. Start with no predictors
2. At each step, find the one predictor (or a few, in stagewise)

giving the best improvement (reduction in the loss
function) over the current model

3. Add the best predictor(s) and iterate

Greedy: not guaranteed to find the best model

Computation: only models, e.g. 435 if

Problem: when to stop adding more variables? After how
many steps? (We'll come back to this)

()p2 p = 30

12 / 29

Modeling assumption: sparsity

We might be willing to assume that a "true" (good enough)
model contains only a few predictors

We call this sparsity, and may even refer to the number of
variables as "the sparsity" of the model, or look for "the best 5-
sparse model"

Motivation: Occam's razor / law of parsimony -- simpler
models/theories are philosophically/scientifically preferable

Sparse best subsets

Now only models to try, if sparsity assumed

e.g. about 174000 if and

∑s

k=1 ()
p

k
≤ s

p = 30 s = 5

13 / 29

Coming soon: lasso

Another method to choose predictor variables

Based on sparsity assumption

Can think of it as a less greedy version of forward stepwise

14 / 29

Optimization strategiesOptimization strategies

Choosing tuning parametersChoosing tuning parameters

Degree of flexibility for non-linear methods, constraint budgetDegree of flexibility for non-linear methods, constraint budget
for SVM, etcfor SVM, etc

15 / 2915 / 29

Discretize and fit sequentially
Start with a grid of values for the tuning parameter
Fit the model for each value in this grid
Pick the best fit (visually, or based on loss function value,
or...)

e.g. For the span or fraction in local regression, try
 and visualize the result

e.g. For the budget ("soft margin") in SVM, try

Problem: When to stop increasing the complexity? (i.e.
decreasing or)

s
s ∈ {0.1, 0.25, 0.5, 0.75, 0.9}

C

C ∈ {2k : k = −4, −2, 0, … , 10}

s C

16 / 29

Modeling assumption: smoothness

Version of simplicity/parsimony for flexible function classes

Linear functions are the smoothest

Smooth function classes: set of functions with some type of
bound on second derivatives, for example

Cool math fact: can be related to sparsity by considering (rate
of decay of) coefficients of function's Fourier transform
(smoother functions have sparser representations when
written in a basis of sine functions, for example)

17 / 29

Optimization strategiesOptimization strategies

"Scaling up" to "big data""Scaling up" to "big data"

18 / 2918 / 29

Calculus with the loss function, revisited

Downside of Newton-Raphson: requires second derivatives,
including inverting the Hessian matrix when optimizing
over parameters

If is large, second-order optimization methods like Newton's
are very costly

First order methods only require computing the gradient
vector

Recall that the gradient is a vector in the direction of steepest
increase in the parameter space

p × p

p > 1

p

p × 1

19 / 29

Gradient (steepest) descent

i.e. skiing as fast as possible. Notation, let

1. Start at an initial point

2. For step

Compute

Update

3. Until some convergence criteria is satisfied

Where the step size is made small enough to not
"overshoot" and increase the loss, i.e. the loss only decreases

L(β) = L(X, y, gβ)

β(0)

n = 1, …

dn = ∇L(β(n−1))

β(n) = β(n−1) − γndn

γn

20 / 29

Coordinate descent

Update only one coordinate of in each step

Cycle through coordinates until some convergence criteria is
satisfied

Can combine with any strategy for univariate optimization --
e.g. one-dimensional Newton's method -- treating other
parameters as constants

β

21 / 29

Optimization strategiesOptimization strategies

Scale up Scale up moremore! Bigger data!! Bigger data!

22 / 2922 / 29

Stochastic/random descent

Instead of cycling through all coordinates in coordinate
descent, just pick one randomly

Instead of computing the gradient of the loss function on
the entire dataset, compute it on a random sample

By identical distribution assumption, for any , by linearity 🌠
of and and ,

Compute update using one randomly sampled observation

or a randomly sampled subset ("mini-batch SGD")

i′

∇ E ∑

E[∇L(xi′ , yi′ , gβ)] = E[
n

∑
i=1

∇L(xi, yi, gβ)]
1

n

23 / 29

Optimization strategiesOptimization strategies

A few special topics in conclusionA few special topics in conclusion

24 / 2924 / 29

Constrained optimization

Remember, some of our optimization problems have
constraints on the parameters, e.g. SVM

Problem: What if the steps in these descent methods take us
outside the parameter constraint region?

Solution strategy: Choose step sizes small enough to stay
inside the constraint region

Solution strategy: Project from the updated point that is
outside the constraint region to the nearest point inside the
constraint region

25 / 29

Non-smooth optimization

Problem: What if the loss function is not (everywhere)
differentiable?

And suppose it is still convex, e.g. hinge loss, absolute value, etc

Solution strategies: In this case there is not a well-defined
gradient but there is still something called a subgradient which
acts like a set of values that are all potential gradients--they all
define tangent lines (surfaces) that stay below the function

Now if we're at a non-differentiable point we just need to
compute any subgradient value and take a step in that
direction

(Advanced topic, this slide non-examinable)

26 / 29

Early stopping

Optimization time = complexity

For many optimization algorithms (including those on
previous slides) the fitted model becomes more complex
the longer the optimization algorithm runs

e.g. the more steps of (stochastic) gradient descent
used in combination with a flexible function class

e.g. the more steps of forward stepwise (adding more
predictor variables)

Idea: control model complexity by stopping the algorithm
before convergence

This is early stopping -- we'll come back to it later
27 / 29

Optimization theoryOptimization theory
If the loss function is convex many of these methods haveIf the loss function is convex many of these methods have
guaranteed convergenceguaranteed convergence to the to the global minimizerglobal minimizer

If the loss function is non-convex, we lose mathematicalIf the loss function is non-convex, we lose mathematical
guaranteesguarantees

Possible convergence to local minimizerPossible convergence to local minimizer

Local minimizers may be much worse than the bestLocal minimizers may be much worse than the best
possible model...possible model...

Or they might not be!Or they might not be!

Deep learning: to hell with convexity 🤠 "it just works"Deep learning: to hell with convexity 🤠 "it just works"

28 / 2928 / 29

Conclusion: optimization in ML is a big topicConclusion: optimization in ML is a big topic

Strategies for specific problemsStrategies for specific problems

e.g. stepwise inclusion of variables, constraints, etce.g. stepwise inclusion of variables, constraints, etc

Strategies for general loss/function classesStrategies for general loss/function classes

e.g. gradient methods, coordinate methodse.g. gradient methods, coordinate methods

Stopping at the right amount of complexityStopping at the right amount of complexity

Maybe the most important part! Next lectureMaybe the most important part! Next lecture

29 / 2929 / 29

