o - - -

Recollections

Since the beginning of the term we've seen

e Fitting different kinds of models

o Least squares (global/linear and local/flexible)
o Newton-Raphson for logistic regression / GLM / MLE
o Defining SVMs via optimization problems

e Making models more complex

o Adding variables
o More flexible functions

This lecture: optimization as a unifying framework for ML



ML tasks as optimization problems

For a given L(z,y,g) and
(X,Y) ~ P, we want to minimize the

minimize R(g) = Ep[L(X,Y, g)]
: we have an i.i.d. sample from P

Then we focus on (ERM)
1 n
minimize — E L(x;,yi,9)
n
i=1

We also choose a (or parameter set), i.e. type of
g, determining the domain of the optimization

3/29

Example: GLMs

e Probability model: the family of the GLM (e.g. binomial)
e Empirical loss function: negative log-likelihood (MLE)
e Function class: set of (parametric) functions of the form

fa(x) =g '(x"B)

for some (p + 1)-dimensional vector of parameters, fixed link
function g

e Make it more complex:

o Add more predictors (new ones, or non-linear
transformations, interactions, etc)
o Localize it: for some flexible, non-linear h (e.g. loess)

4 /29



Parametric vs "non"-parametric

A

For GLM, Newton-Raphson gives us B i.e. f

For loess, we choose (or use the default) span and then do
local logistic regression to get f

(using a multi-dimensional analogue of loess if necessary)

In both cases, we have computed the empirical risk minimizer
f over some function class

: which function class?

e Multivariate linear case: which predictors to include?
e loess case: what span value?

5/29

Example: SVM

e Probability model: ...
e Empirical loss function: loss, [ ]+ means positive part

SS - wEB - Aol
1=1

Next slide: ISLR Figure 9.2 plot of L(y;4;) = [1 — v:y;]+
e Function class: linear classifiers f(x) = sign(x? 8 + 3,)
e Make it more complex

o Add more predictors
o Reduce constraint-violation budget (non-sep. case)
o Make it flexibly non-linear (future lecture)

6/29



Example: SVM

® 7 = SVM Loss
® |ogistic Regression Loss
(o —
123
& < -
-
N —
o —

Yi(Bo + Biin + - . . + Bpip)

7/29

Comparison: logistic vs SVM

e Similar classification performance possible with both
o Compare "apples to apples," e.g. both non-linear

Logistic advantage: inference

SVM advantage: computation

: which function class?

Multivariate linear case
o Which predictors to include?
o What constraint budget value?
Non-linear case: choosing the analogue of the span value

8/29



ML design choices

Pattern repeats as we introduce more ML methods (kernel
methods, tree-based methods, neural networks, etc)

e Loss function (RSS, MLE, hinge, etc)

e Class of regression/classification functions (linear,
parametric non-linear, some specific kind of non-
parametric non-linear like loess, etc)

e Algorithm for fitting an optimal function within that class
(choosing which predictors to include, estimating
coefficients, choosing span or SVM constraint budget, etc)

...often forgotten in ML! Key assumptions: data
(bias -
"dataset/distribution shift")

9/29

Optimization strategies

Choosing predictor variables




Best subset selection

e Try all 2P subsets of predictor variables
e Keep the best one (based on RSS or deviance or something)

e Problem: complexity exponential in p, over 10° models if
p =30

11/29

Forward stepwise/stagewise selection

"Greedy" approximation to best subset

1. Start with no predictors

2. At each step, find the one predictor (or a few, in stagewise)
giving the best improvement (reduction in the loss
function) over the current model

3. Add the best predictor(s) and iterate

e Greedy: not guaranteed to find the best model

Computation: only (’2)) models, e.g. 435 if p = 30

J : when to stop adding more variables? After how
many steps? (We'll come back to this)

12 /29



Modeling assumption: sparsity

We might be willing to assume that a "true" (good enough)
model contains only a few predictors

We call this , and may even refer to the number of
variables as "the sparsity" of the model, or look for "the best 5-
sparse model"

: Occam's razor [ law of parsimony -- simpler
models/theories are philosophically/scientifically preferable

Sparse best subsets

Now only 2221 (Z) models to try, if sparsity assumed < s

e.g. about 174000 if p = 30 and s = 5

Coming soon: lasso

Another method to choose predictor variables
Based on sparsity assumption

Can think of it as a less greedy version of forward stepwise

13 /29

14 [ 29



Optimization strategies

Choosing tuning parameters

Degree of flexibility for non-linear methods, constraint budget
for SVM, etc

Discretize and fit sequentially

e Start with a grid of values for the tuning parameter

e Fit the model for each value in this grid

e Pick the best fit (visually, or based on loss function value,
or...)

e.g. For the span or fraction s in local regression, try
s € {0.1,0.25,0.5,0.75,0.9} and visualize the result

e.g. For the budget ("soft margin") C' in SVM, try
Ce{2":k=-4,-2,0,...,10}

o : When to stop increasing the complexity? (i.e.
decreasing s or C)

16 /29



Modeling assumption: smoothness

Version of simplicity/parsimony for flexible function classes
Linear functions are the smoothest

Smooth function classes: set of functions with some type of
bound on second derivatives, for example

: can be related to sparsity by considering (rate
of decay of) coefficients of function's Fourier transform
(smoother functions have sparser representations when
written in a basis of sine functions, for example)

17 ] 29

Optimization strategies

"Scaling up” to "big data”




Calculus with the loss function, revisited

Downside of Newton-Raphson: requires second derivatives,
including inverting the p X p Hessian matrix when optimizing
over p > 1 parameters

If pislarge, optimization methods like Newton's
are very costly

First order methods only require computing the p X 1 gradient
vector

Recall that the gradient is a vector in the direction of steepest
increase in the parameter space

19/29

Gradient (steepest) descent

i.e. skiing as fast as possible. Notation, let
L(B) = L(X,y, 95)
1. Start at an initial point 5(%)
2.Forstepn =1,...
o Computed, = VL(B"Y)
o Update 8" = g1 _ 4, d,
3. Until some convergence criteria is satisfied

Where the “r is made small enough to not
"overshoot" and increase the loss, i.e. the loss only decreases

20 /29



Coordinate descent

Update only one coordinate of 3 in each step

Cycle through coordinates until some convergence criteria is
satisfied

Can combine with any strategy for univariate optimization --
e.g. one-dimensional Newton's method -- treating other
parameters as constants

21 /29

Optimization strategies

Scale up more! Bigger data!




Stochastic/random descent

e Instead of cycling through all coordinates in coordinate
descent, just pick one randomly

e Instead of computing the gradient of the loss function on
the entire dataset, compute it on a random sample

By identical distribution assumption, for any #’, by linearity 2
of Vand Eand ),

E[VL(xi,y;,95)] = E

1 n
— L 1Y ¢
L3 Vitsss)

Compute update using one randomly sampled observation
or a randomly sampled subset ("mini-batch SGD")

23 /29

Optimization strategies

A few special topics in conclusion




Constrained optimization

Remember, some of our optimization problems have
constraints on the parameters, e.g. SVM

: What if the steps in these descent methods take us
outside the parameter constraint region?

: Choose step sizes small enough to stay
inside the constraint region

: Project from the updated point that is
outside the constraint region to the nearest point inside the
constraint region

25/ 29

Non-smooth optimization

: What if the loss function is not (everywhere)
differentiable?

And suppose it is still , €.9. hinge loss, absolute value, etc

: In this case there is not a well-defined
gradient but there is still something called a which
acts like a set of values that are all potential gradients--they all
define tangent lines (surfaces) that stay below the function

Now if we're at a non-differentiable point we just need to
compute any subgradient value and take a step in that
direction

( , this slide non-examinable)

26 [ 29



Early stopping
Optimization time = complexity

e For many optimization algorithms (including those on
previous slides) the fitted model becomes more complex
the longer the optimization algorithm runs

o e.g.the more steps of (stochastic) gradient descent
used in combination with a flexible function class

o e.g.the more steps of forward stepwise (adding more
predictor variables)

: control model complexity by stopping the algorithm
before convergence

This is -- we'll come back to it later

Optimization theory

e If the loss function is convex many of these methods have
guaranteed convergence to the global minimizer

e If the loss function is non-convex, we lose mathematical
guarantees

o Possible convergence to local minimizer

o Local minimizers may be much worse than the best
possible model...

o Or they might not be!

Deep learning: to hell with convexity @ "it just works"

27 [ 29




Conclusion: optimization in ML is a big topic

Strategies for specific problems
e.g. stepwise inclusion of variables, constraints, etc
Strategies for general loss/function classes
e.g. gradient methods, coordinate methods
Stopping at the right amount of complexity

Maybe the most important part! Next lecture




