
Additive
separate non-linear terms are combined by addition

univariate
each non-linear term uses only one predictor

non-linearity
can be �t using various methods we've already learned

GAM: Generalized Additive Model

1 / 34 00:55

Additive modeling assumption
Linearity assumption: each predictor has a coe�cient

Additivity assumption: each predictor has a function

Includes linear models as special case if

Assumptions / modeling choices:

Assume is in some function space / �t with some method
e.g. global polynomial, loess, local/kernel regression,
smoothing splines, etc--pick your favorite!
Can use same/di�erent methods for each predictor

g(E[y|X]) = β0 + β1x1 + β2x2 + ⋯ + βpxp

g(E[y|X]) = β0 + f1(x1) + f2(x2) + ⋯ + fp(xp)

fj(xj) = βjxj

fj

2 / 34

Non-linear regression

Other times it's less clear, based on noise level and sample size

f1 <- function(x) -1 + 2*x - x^2
f2 <- function(x) sin(pi*x)
f3 <- function(x) exp(-5*(x-1/2)^2)

set.seed(1)
n <- 400
df <- data.frame(
 x1 = 2*(runif(n)-1/2),
 x2 = sample(1:100 / 50, n, replace = TRUE),
 x3 = runif(n)
) %>%
 mutate(
 y = f1(x1) + f2(x2) + f3(x3) + rnorm(n)
)

3 / 34

Univariate plots

uni_plot <- function(j) {
 xj <- paste0("x", j)
 fj <- paste0("f", j)
 ggplot(df, aes(get(xj), y)) +
 geom_point(alpha = .5) +
 geom_smooth() + xlab(xj) +
 geom_function(fun = get(fj),
 size = 1,
 color = "green") +
 theme(axis.text.x=element_blank(),
 axis.ticks.x=element_blank())
}
p1 <- uni_plot(1)
p2 <- uni_plot(2)
p3 <- uni_plot(3)

Side by side plots by adding with the patchwork library

4 / 34

library(patchwork)
p1 + p2 + p3

5 / 34

Bias? Why? 😲
The true model is additive

We plot each variable separately but the loess curves are
biased...

To �t we would ideally do loess on

But we don't know and , we are trying to estimate them
too!

f̂ 1

y − f2(x2) − f3(x3)

f2 f3

6 / 34

Backfitting algorithm

1. Start with some initial estimates , e.g. from y ~ x_j

2. Iterate over , updating by �tting r_j ~ x_j where the
partial residual

is computed using the current �ts for all the other
predictors

3. Repeat until "convergence" (some stopping rule)

f̂ j

j f̂ j

rj

rj = y − β̂0 −∑
k≠j

f̂ k(xk)

7 / 34

Can additivity/GAMs be importantly wrong?

Interpretation: think carefully about calculus and causality. To
simplify let's consider the identity link function (rather than e.g.
logistic regression, those cases are more complicated)

Calculus

Does the CEF really decompose into additive terms? Is this
approximation good:

Or does the relationship between the average of and vary
depending on the value of another predictor ?

E[Y |X] ≈ g(xj)
∂

∂xj

Y xj

xk

8 / 34

Can additivity/GAMs be importantly wrong?

Interpretation: think carefully about calculus and causality. To
simplify let's consider the identity link function (rather than e.g.
logistic regression, those cases are more complicated)

Causality

First, remember that causality is separate from prediction

But also, it may be a reason for doubting additivity

For example, if is a cause of , or if they have a common
cause, then we may want to include an interaction term for
them

Xk Xj

9 / 34

library(ggplot2movies)
df <- movies %>%
 filter(length <= 200, length > 10,
 year > 1918, votes >= 5) #, Short != 1)

I asked on Twitter what was missing from the plot of movie
length vs movie rating and Thomas Lumley suggested
confounding by year

10 / 34

https://twitter.com/tslumley/status/1361789344118284288

Additive combination of non-linear predictors

library(gam)
fit_gam_loess <-
 gam(rating ~ lo(length) + lo(year), data = df)

lo is for loess, but can use di�erent methods too

tidy(fit_gam_loess)

A tibble: 3 × 6
term df sumsq meansq statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 lo(length) 1 190. 190. 86.8 1.23e- 20
2 lo(year) 1 1561. 1561. 715. 2.12e-156
3 Residuals 53380. 116623. 2.18 NA NA

No coe�cients, so how do we interpret?

11 / 34

Replace each linear coefficient with 2d plot

par(mfrow = c(1,2))
plot(fit_gam_loess)

12 / 34

Interpretation: holding other variables constant

df_hat <- df %>%
 mutate(.fitted = predict(fit_gam_loess))

df_fixed_year <- df_hat %>%
 filter(year %in% c(1950, 1960, 1970, 1980, 1990, 2000))

df_fixed_length <- df_hat %>%
 filter(length %in% c(80, 100, 120))

Let's look at a few speci�c years and plot the �tted
relationship with length for each of those subsets of the data

Do the same for a few speci�c lengths and �tted relationship
with year

13 / 34

"Coefficient" of length, holding year constant

df_fixed_year %>%
 ggplot(aes(length, rating)) + geom_point(alpha = .1) +
 geom_line(aes(y = .fitted)) + facet_wrap(~ year)

14 / 34

"Coefficient" of year, holding length constant

df_fixed_length %>%
 ggplot(aes(year, rating)) + geom_point(alpha = .1) +
 geom_line(aes(y = .fitted)) + facet_grid(~ length) + theme(axis.

15 / 34

One univariate non-linear relationship

16 / 34

Another univariate non-linear relationship

17 / 34

Interactions in the movies data

Does the relationship between length and rating change
depending on the year? Let's check a few years

18 / 34

Misspecification: failure of additivity

Di�cult to tell because of small outside the range of length
between 1 and 2 hours

But I think it's possible the relationship is changing over time,
i.e. there is an interaction

Since the right hand side does not depend on length only, the
additive model might be a poor �t

Less accurate predictions

(Possibly importantly) wrong interpretations

n

E[rating|length, year] ≈ g(length, year)
∂

∂length

19 / 34

"Linear modeling assumption"
Why are we so often assuming linearity? (of the right hand side)

Easier to interpret, sure...
But also easier to estimate

Sometimes non-linearity is clear from the data or domain info

Other times it's less clear, and makes it harder to learn a CEF

g(E[y]) = β0 + βT x

20 / 34

Fundamental limits in non-linearity
Applies to many ML approaches

GAMs (Generalized Additive Models)
Nearest neighbors
Kernels
Trees
Networks (deep learning)

(Can use any for both regression and classi�cation)

21 / 34

Non-linear regression

One CEF is , the other is f(x) = −1 + 2x − x2 f(x) + g(x)

22 / 34

fit <- function(D) {
 list(
 lm(y ~ x, D),
 lm(y ~ f(x), D),
 lm(y ~ f(x) + g(x), D))
}
models_data_f <-
 fit(data_f)
models_data_fg <-
 fit(data_fg)

Lists of �tted models on each
dataset

Linear (under�t?)

models_data_f

[[1]]

Call:
lm(formula = y ~ x, data = D)

Coefficients:
(Intercept) x
1.019 -1.053

[[2]]

Call:
lm(formula = y ~ f(x), data = D)

Coefficients:
(Intercept) f(x)
0.0009062 1.0027503

Fitting the "true" models

f(x)
f(x) + g(x)

23 / 34

map_dfr(models_data_f, glance) # true CEF = f

A tibble: 3 × 12
r.squared adj.r.squa…¹ sigma stati…² p.value df logLik AIC BIC
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.227 0.225 1.08 117. 4.20e-24 1 -598. 1201. 1213.
2 0.282 0.281 1.04 157. 1.54e-30 1 -583. 1172. 1184.
3 0.282 0.279 1.04 78.1 2.42e-29 2 -583. 1174. 1190.
… with 2 more variables: df.residual <int>, nobs <int>, and abbreviated
variable names ¹ adj.r.squared, ² statistic, ³ deviance

map_dfr(models_data_fg, glance) # CEF = f + g

A tibble: 3 × 12
r.squared adj.r.squa…¹ sigma stati…² p.value df logLik AIC BIC
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.189 0.187 1.29 92.9 6.83e-20 1 -668. 1341. 1353.
2 0.221 0.219 1.26 113. 2.35e-23 1 -660. 1325. 1337.
3 0.469 0.467 1.04 175. 2.52e-55 2 -583. 1174. 1190.
… with 2 more variables: df.residual <int>, nobs <int>, and abbreviated
variable names ¹ adj.r.squared, ² statistic, ³ deviance

Both look like high noise level, but 1 has ~double ? 🤨R2

24 / 34

Revealing 🤪

Datasets look very similar, but �ts one and not the other

f(x) + g(x)

f + g

25 / 34

If not linear, then what?
Choose a space of functions to optimize over

Linear functions in variables vector space

Polynomials up to a �xed, maximum degree: also �nite
dimensional vector space

Many (non-linear) function spaces are in�nite dimensional
vector spaces

 (Fourier basis)

Spaces of integrable functions, or di�erentiable

Underlying math: linear algebra functional analysis

p ↔ R
p

{fk(x) = sin(kπx) : k ∈ Z}

→

26 / 34

Intuitions about function spaces

Optimize over a larger space �t more complex models

Bias-variance trade-o�: both choice of right/good space of
functions and amount of complexity in that space

e.g. periodic (like last example), right wavelengths

e.g. smooth, right amount of wiggliness

e.g. "Shape constraints" like monotonic, unimodal,
(log-)concave (Application: epidemic trajectory)

Science/modeling/inference approach: domain knowledge, �rst
principles

ML approach: whichever function space has current SOTA
software (with easy to use default settings 😆)

→

27 / 34

Optimizing over a large function space

overfit <- function(D, k_range = 0:200) {
 fit_sin_k <- function(k) {
 fit_k <- lm(y ~ x + sin(k*x), data = D)
 glance(fit_k)$r.squared
 }
 r_squareds <- map_dbl(k_range, fit_sin_k)
 best_k <- k_range[which.max(r_squareds)]
 best_k
}
khat_f <- overfit(data_f)
khat_fg <- overfit(data_fg)
c(khat_f, khat_fg)

[1] 1 100

Apparently or , respectively

f̂ (x) = β0 + β1x + β2 sin(k̂x)

k̂ = 1 k̂ = 100

28 / 34

Plotting the "best" models

Can we believe this?

29 / 34

So which is it?

When we aren't doing simulations we just have the data

We don't know signal/noise level, function space, complexity...

30 / 34

The "big data" advantange

With larger samples we could tell these two cases apart

Use more data for validation / in-distribution generalization

31 / 34

Non-linearity and overfitting
Much of machine learning and "AI" is about having large
enough datasets to search large spaces of functions and �t
complex models without variability problems from over�tting

i.e. good in-distribution generalization (new data, same DGP)

Intuition: more complex models are more sensitive to small
changes in the data, or more "brittle"

Statistical wisdom: another reason to prefer simpler
models may be better out-of-distribution generalization

i.e. avoiding bias problems from over�tting

32 / 34

Out-of-distribution generalization

What if we test on data outside the original range/distribution?

Simpler/"under�t" models (dashed lines) might do better

33 / 34

Choosing function spaces and methods

Since this is a course in ML, we won't assume these choices can
be informed by domain knowledge

A few examples based on high level properties of the data
and goals of the analysis -- not an exhaustive list or �owchart

(Assuming data shape is rectangular and i.i.d., otherwise we
need specialized models for other data/dependence types)

Goals (tall) or (wide)

Prediction only Network methods Ridge

+ Interpretation See below Lasso

Additivity GAMs. Interactions tree methods

n > p n ≈ p p > n

→ →

34 / 34

