
Regression and classification trees

More interpretable than linear models?

Sequence of simple questions about individual predictors

Growing and pruning

Strategies for improving "weak" models

Bagging

Random forests (similar to "dropout" -- future topic)

Boosting

1 / 42 00:56

Decision trees

Are you eligible for the COVID-19 vaccine?

If Age >= 50 then yes, otherwise continue
If HighRisk == TRUE then yes, otherwise continue
If Job == CareWorker then yes, otherwise no

This is (arguably) more interpretable than a linear model with
multiple predictors

(Note: this is not the real vaccination criteria, but it was close to
this in early 2021)

2 / 42

Measuring our large adult penguins

library(palmerpenguins)

pg <- penguins %>% drop_na()

3 / 42

Regression tree to predict penguin massiveness

library(tree)

fit_tree <-

 tree(body_mass_g ~ flipper_length_mm + bill_length_mm, control =

plot(fit_tree, type = "uniform")

text(fit_tree, pretty = 0, cex = 1.7)

4 / 42

Partial dependence plots with plotmo

library(plotmo)

vars <- c("bill_length_mm", "flipper_length_mm")

plotmo(fit_tree, trace = -1, degree1 = NULL, degree2 = vars)

5 / 42

Recursive rectangular splitting on predictors

"Stratification of the feature space"

Input: subset of data

 For each predictor variable x_j in subset

 Split left: observations with x_j < cutoff

 Split right: observations with x_j >= cutoff

 Predict constants in each split

 Compute model improvement

 Scan cutoff value to find best split for x_j

Output: predictor and split with best improvement

Starting from full dataset, compute first split as above

Recurse: take the two subsets of data from each side of the
split and plug them both back into the same function

Until some stopping rule prevents more splitting

6 / 42

Regression tree predictions

7 / 42

Tree diagram again for comparison

8 / 42

Categorical predictors

fit_tree <- tree(body_mass_g ~ ., data = pg)

plot(fit_tree, type = "uniform")

text(fit_tree, pretty = 0, cex = 1.7)

Split using levels, e.g. the species Adelie, Chinstrap, Gentoo

9 / 42

Stopping rules

fit_tree <- tree(body_mass_g ~ .,

 control = tree.control(nrow(pg), mindev = 0.001), data = pg)

Interpretable?... (see ?tree.control for options)

10 / 42

Complexity and overfitting
Could keep recursively splitting on predictor space until we
have bins containing only 1 unique set of predictor values each

This would be like 1-nearest neighbors

Lab exercise: create a plot of training error versus tree size

fit_tree <- tree(body_mass_g ~ .,

 control = tree.control(nrow(pg), mindev = 0.000001), data =

summary(fit_tree)$size # number of "leaf" endpoints

[1] 53

11 / 42

Growing and pruning
Problem: greedy splitting

Each split uses the best possible predictor, similar to forward
stepwise. Early stopping may prevent the model from finding
useful but weaker predictors later on

Solution: don't use early stopping. Grow a large tree

Problem: overfitting

Larger trees are more complex, more difficult to interpret, and
could be overfit to training data

Solution: (cost complexity / weakest link) pruning

12 / 42

How to prune a tree

After growing a large tree, find the "best" sub-tree

Problem: too many sub-trees

The number of sub-trees grows combinatorially in the number
of splits (depends on depth as well, interesting counting
problem)

Solution: consider only a one-dimensional path of sub-tree
models, the ones that minimize

for . Now we can choose , and therefore a specific sub-
tree, using validation

RSS(Sub-tree) + α|SubTree|

α ≥ 0 α

13 / 42

Classification trees
If the outcome is categorical we need to modify the splitting
algorithm

When making a split, classify all observations in each leaf
with the same class (modal category rather than mean
numeric prediction)

Can't measure improvement in fit by reduction in RSS,
instead, use reduction of some measure related to
classification error

Software generally uses Gini index by default. In a leaf:

K

∑
k=1

p̂k(1 − p̂k)

14 / 42

Trees, forests, and other models
Model using a single tree is very simple. High
interpretability, but likely low prediction accuracy

For proper machine learning we'll combine many trees into
one model (next topic)

When should we use these tree methods?

High complexity, so usually want

If "true" relationships are linear/smooth, tree methods
may fit poorly compared to linear/smooth methods

Trees more easily handle categorical predictors and
missing values (can treat missingness as a category)

n > p

15 / 42

Tree-based fit vs smooth fit

16 / 42

Data pre-processing, missing values

pg <- penguins %>%

not interested in classifying by time/island

 select(-island, -year, -sex) %>%

 drop_na()

Inference/interpretation with missing data requires special
methods like multiple imputation

17 / 42

https://gking.harvard.edu/amelia
https://stefvanbuuren.name/fimd/workflow.html
https://recipes.tidymodels.org/reference/index.html#section-step-functions-imputation

Classification tree

Why splits with the same classifications in both sides?

18 / 42

tree_hat <- data.frame(

 yhat = predict(fit_tree),

 species = pg$species

)

roc_auc(tree_hat,

 truth = species,

 starts_with("yhat"))

A tibble: 1 × 3

.metric .estimator .estimate

<chr> <chr> <dbl>

1 roc_auc hand_till 0.981

Average the AUC of each one-
vs-all binary classification

roc_auc from yardstick or
tidymodels packages

roc_curve(tree_hat,

 truth = species,

 starts_with("yhat")) %>%

 ggplot(aes(1-specificity,

 sensitivity,

 color = .level,

 linetype = .level)) +

 geom_line()

Multi-class AUC

19 / 42

Three model improvement strategies

Sacrifice simplicity/interpretability for prediction accuracy

Can be used with other models too, not just trees

Bagging: bootstrap aggregating

Resample training data, average resulting models

Random forest: randomly drop predictors

Randomly drop predictors when resampling

Boosting: iterative descent using residuals

Fit each new model to residual of previous fits

20 / 42

Bagging: bootstrap aggregating
Problem: a single tree model can have high variance (like many
non-smooth or non-regularized models)

1. Bootstrap: for each resamples (with

replacement) of the training data, fit on bootstrap
sample

2. Aggregate: combine the models, using majority vote for
classification or mean for regression

("Smoothing" useful for low-bias, high-variance models)

b = 1, … ,B

f̂
∗b

b

B

f̂ bag =
B

∑
b=1

f̂
∗b1

B

21 / 42

Predictions for one penguin

 species flipper_length_mm

 Adelie 190

 bill_length_mm bill_depth_mm

 42 20.2

Adelie Chinstrap Gentoo

1 0.8809524 0.11904762 0.00000000

2 0.8292683 0.17073171 0.00000000

3 0.9767442 0.02325581 0.00000000

4 0.8536585 0.04878049 0.09756098

Aggregating is... smoothing?

22 / 42

Out-of-bag predictions
Each bootstrap sample contains some subset of the training
data

Roughly portion of the training samples will be
left out of each bootstrap sample

Can use these to estimate test error (e.g. instead of -fold
cross-validation)

Software implementations may do this automatically

1/e ≈ 0.37

K

23 / 42

Random forest: dropping predictors
Problem: aggregation does not increase information if the
aggregates are highly correlated, e.g. averaging 1000 trees but
each one uses the same small set of predictor variables

1. Drop predictors randomly during resampling

e.g. randomly include of the predictors in each

2. Aggregate models which are now less correlated, achieving
greater variance reduction

Var(
B

∑
b=1

f̂
∗b
) =

B

∑
b=1

Var(f̂
∗b
)+

B

∑
b=1

∑
b′≠b

Cov(f̂
∗b

, f̂
∗b′

)

√p p f̂
∗b

24 / 42

Predictions for one penguin

 species flipper_length_mm

 Adelie 190

 bill_length_mm bill_depth_mm

 42 20.2

Adelie Chinstrap Gentoo

1 0.8809524 0.11904762 0.0000000

2 0.6274510 0.37254902 0.0000000

3 0.8260870 0.04347826 0.1304348

4 0.9000000 0.07500000 0.0250000

Aggregating less-correlated models

25 / 42

Boosting: iterated fitting on residuals

Idea: train models sequentially, decreasing residuals by a small
amount each time. Each model contributes something different

Can use weak learners -- e.g. trees with one split ("stumps") --
to grow an ensemble model gradually fitting closer to the
training data

Relationship with gradient descent

Gradient descent: small step in direction of negative gradient

Boosting: small step in direction of weak learner closest to
negative gradient (maximum inner product in function space)

Optional additional reading: ESL Chapter 10 (non-examinable)

26 / 42

https://web.stanford.edu/~hastie/ElemStatLearn/

Boosting in practice

More tuning parameters

Number of trees/steps , complexity of each tree/model ,
regularization/learning rate . Warning: can now overfit with
large (unlike bagging/r.f.)

Choosing/optimizing tuning parameters

Software may do something automatically. No guarantee it's
reasonable! e.g. optimize over a grid of tuning parameters

Two grid-tuning stages:

1. Rough grid covering a large range (possibly orders of
magnitude)

2. Finer grid over a smaller range

B d
λ

B

27 / 42

Powerful ML tools/software
Let's see these methods in action on the penguins dataset

We'll use tidymodels to streamline the process

28 / 42

https://rviews.rstudio.com/2019/06/19/a-gentle-intro-to-tidymodels/

tidymodels workflows

Training and testing data

Using initial_split

library(tidymodels)

pg_split <- initial_split(pg, strata = species)

pg_train <- training(pg_split)

pg_test <- testing(pg_split)

pg_cv <- vfold_cv(pg_train, v = 10, strata = species)

10-fold cross-validation (v = 10 is also the default) on training
data

(This just sets up the data, it doesn't fit any models yet)

29 / 42

tidymodels workflows

Pre-processing and model specification

Using recipe

pg_recipe <- training(pg_split) %>%

 recipe(species ~ .) %>%

 prep()

I already did the pre-processing earlier. If your processing uses
more steps, then you have to juice() the testing data to
prepare it (apply the same preprocessing to test data)

(Still setting up, no models fit yet)

30 / 42

Next: slides setting up 4 different models

A single classification tree

Bagged trees

A random forest

And boosted trees

There's a lot of code but I'll highlight what's important

31 / 42

Classification tree

Specify fitting algorithm

pg_tree <- decision_tree(tree_depth = 6,

 cost_complexity = tune("C")) %>%

 set_engine("rpart") %>%

 set_mode("classification")

pg_workflow_tree <- workflow() %>%

 add_recipe(pg_recipe) %>%

 add_model(pg_tree)

pg_fit_tree <- tune_grid(

 pg_workflow_tree,

 grid = data.frame(C = 2^(-5:0)),

 pg_cv,

 metrics = metric_set(roc_auc)

)

32 / 42

Tuning parameters with CV-error

pg_fit_tree %>% autoplot()

33 / 42

pg_tree_final <-

 finalize_model(

 pg_tree,

 pg_tree_best)

pg_tree_final

Decision Tree Model Specification (classification)

Main Arguments:

cost_complexity = 0.03125

tree_depth = 6

Computational engine: rpart

pg_tree_test <-

 pg_workflow_tree %>%

 update_model(pg_tree_final) %

 last_fit(split = pg_split) %>

 collect_metrics() # test erro

pg_tree_test

A tibble: 2 × 4

.metric .estimator .estimate .conf

<chr> <chr> <dbl> <chr>

1 accuracy multiclass 0.965 Prepr

2 roc_auc hand_till 0.981 Prepr

Fit and test best tree model

pg_tree_best <- pg_fit_tree %>%

 select_best() # best tuning parameters

34 / 42

Bagging (bootstrap aggregating) trees

library(baguette)

pg_bag <- bag_tree(tree_depth = 7,

 cost_complexity = tune("C")) %>%

 set_mode("classification") %>%

 set_engine("rpart", times = 5)

Specify data/recipe for fitting

pg_workflow_bag <- workflow() %>%

 add_recipe(pg_recipe) %>%

 add_model(pg_bag)

pg_fit_bag <- tune_grid(

 pg_workflow_bag,

 grid = data.frame(C = 2^(-5:0)),

 pg_cv,

 metrics = metric_set(roc_auc)

)

35 / 42

pg_bag_final <-

 finalize_model(

 pg_bag,

 pg_bag_best)

pg_bag_final

Bagged Decision Tree Model Specification (classification)

Main Arguments:

cost_complexity = 0.0625

tree_depth = 7

min_n = 2

Engine-Specific Arguments:

times = 5

Computational engine: rpart

pg_bag_test <-

 pg_workflow_bag %>%

 update_model(pg_bag_final) %>

 last_fit(split = pg_split) %>

 collect_metrics() # test erro

pg_bag_test

A tibble: 2 × 4

.metric .estimator .estimate .conf

<chr> <chr> <dbl> <chr>

1 accuracy multiclass 0.965 Prepr

2 roc_auc hand_till 0.992 Prepr

Fit and test best bagging model

pg_bag_best <- pg_fit_bag %>%

 select_best() # best tuning parameters

36 / 42

Random forests

pg_rf <-

 rand_forest(trees = 100, mtry = tune()) %>%

 set_mode("classification") %>%

 set_engine("randomForest")

pg_workflow_rf <- workflow() %>%

 add_recipe(pg_recipe) %>%

 add_model(pg_rf)

Run fitting algorithm with cross-validation on training data

pg_fit_rf <- tune_grid(

 pg_workflow_rf,

 pg_cv,

 metrics = metric_set(roc_auc)

)

37 / 42

pg_rf_final <-

 finalize_model(

 pg_rf,

 pg_rf_best)

pg_rf_final

Random Forest Model Specification (classification)

Main Arguments:

mtry = 2

trees = 100

Computational engine: randomForest

pg_rf_test <-

 pg_workflow_rf %>%

 update_model(pg_rf_final) %>%

 last_fit(split = pg_split) %>

 collect_metrics() # test erro

pg_rf_test

A tibble: 2 × 4

.metric .estimator .estimate .conf

<chr> <chr> <dbl> <chr>

1 accuracy multiclass 0.988 Prepr

2 roc_auc hand_till 0.999 Prepr

Fit and test best random forest model

pg_rf_best <- pg_fit_rf %>%

 select_best() # best tuning parameters

38 / 42

Boosting classification trees

pg_boost <-

 boost_tree(trees = tune(),

 learn_rate = tune()) %>%

 set_mode("classification") %>%

 set_engine("xgboost", objective = "multi:softprob")

pg_workflow_boost <- workflow() %>%

 add_recipe(pg_recipe) %>%

 add_model(pg_boost)

Run fitting algorithm with cross-validation on training data

pg_fit_boost <- tune_grid(

 pg_workflow_boost,

 pg_cv,

 metrics = metric_set(roc_auc)

)

39 / 42

pg_boost_final <-

 finalize_model(

 pg_boost,

 pg_boost_best)

pg_boost_final

Boosted Tree Model Specification (classification)

Main Arguments:

trees = 989

learn_rate = 0.0138390874390264

Engine-Specific Arguments:

objective = multi:softprob

Computational engine: xgboost

pg_boost_test <-

 pg_workflow_boost %>%

 update_model(pg_boost_final)

 last_fit(split = pg_split) %>

 collect_metrics() # test erro

pg_boost_test

A tibble: 2 × 4

.metric .estimator .estimate .conf

<chr> <chr> <dbl> <chr>

1 accuracy multiclass 0.988 Prepr

2 roc_auc hand_till 0.999 Prepr

Fit and test best boosted tree model

pg_boost_best <- pg_fit_boost %>%

 select_best() # best tuning parameters

40 / 42

AUC

A tibble: 4 × 2

model .estimate

<chr> <dbl>

1 tree 0.981

2 bagging 0.992

3 randf 0.999

4 boost 0.999

Accuracy

A tibble: 4 × 2

model .estimate

<chr> <dbl>

1 tree 0.965

2 bagging 0.965

3 randf 0.988

4 boost 0.988

Evaluate models

Optimal cross-validation accuracy

all_models <- list(pg_tree_test, pg_bag_test,

 pg_rf_test, pg_boost_test) %>%

 map_dfr(bind_rows)

Which is best? Well, the full sample size is 342...

41 / 42

We're in dangerous territory

Less interpretable methods/models
Many tuning parameters
Increasingly sophisticated software with many defaults
and/or automatically optimized tuning parameters

But consider, Alfred North Whitehead said (pre-WW2):

It is a profoundly erroneous truism, repeated by all
copy-books and by eminent people when they are
making speeches, that we should cultivate the habit
of thinking of what we are doing. The precise
opposite is the case. Civilization advances by
extending the number of important operations
which we can perform without thinking about
them.

42 / 42

https://philosophicaldisquisitions.blogspot.com/2015/04/is-automation-making-us-stupid.html

